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Abstract—In this paper, we propose a novel con-
gestion control framework for delay- and disruption
tolerant networks (DTNs). The proposed framework,
called Smart-DTN-CC, adjusts its operation automatically
as a function of the dynamics of the underlying net-
work. It employs reinforcement learning, a machine
learning technique known to be well suited to problems
in which the environment, in this case the network,
plays a crucial role; yet, no prior knowledge about
the target environment can be assumed, i.e., the only
way to acquire information about the environment is
to interact with it through continuous online learning.
Smart-DTN-CC nodes get input from the environment
(e.g., its buffer occupancy, set of neighbors, etc), and,
based on that information, choose an action to take
from a set of possible actions. Depending on an action’s
effectiveness in controlling congestion, it will be given a
reward. Smart-DTN-CC’s goal is to maximize the over-
all reward which translates to minimizing congestion.
To our knowledge, Smart-DTN-CC is the first DTN
congestion control framework that has the ability to
automatically and continuously adapt to the dynamics
of the target environment which allows Smart-DTN-
CC to deliver adequate performance in a variety of
DTN applications and scenarios. As demonstrated by
our experimental evaluation, Smart-DTN-CC is able
to consistently outperform existing DTN congestion
control mechanisms under a wide range of network
conditions and characteristics.

I. Introduction

Delay and Disruption Tolerant Networks (DTNs) are
networks that operate in challenged- and extreme environ-
ments. Unlike traditional networks, such as the TCP/IP
Internet, DTNs are often subject to high latency caused
by very long propagation delays (e.g. interplanetary com-
munication) and/or intermittent connectivity. As a result,
in DTNs, there is no guarantee of continuous end-to-end
connectivity between nodes. In fact, arbitrarily frequent
and long-lived connectivity disruptions are part of DTNs’
normal operation.

DTN’s inability to guarantee end-to-end connectivity
between nodes and extremely long latencies due to high
propagation delays and/or episodic connectivity call for
approaches to network control that are fundamentally
different from what has been in use on the Internet.
More specifically, the control functions provided by the

Internet’s Transmission Control Protocol (TCP) are all
performed end-to-end over a logical connection established
between sender and receiver, Since DTNs are typically
“connectivity-challenged”, network control in DTNs must
be done on a hop-by-hop basis. This is the case for
the custody transfer [1] and store-carry-and-forward [2]
paradigms that have been proposed for DTNs which re-
quire that DTN nodes store data in persistent storage
for arbitrarily long periods of time before they find a
suitable next-hop. As a consequence, congestion control
is critically important in order to ensure that DTN nodes
are congestion-free such that they can serve as relays to
help deliver messages end-to-end. DTN congestion control
has thus received considerable attention from the net-
working research community. An overview of the current
DTN congestion control state-of-the-art is presented in [3],
while the performance of a representative set of DTN
congestion control mechanisms is evaluated in [4] and [5].
These studies reveal that existing DTN congestion con-
trol solutions do not exhibit adequate performance when
used in different scenarios and conditions. Existing DTN
congestion control schemes do not perform adequately
due mainly to their inability to dynamically adjust their
operation to changing network conditions. Additionally,
some of them employ reactive techniques, depend on the
underlying routing mechanism, and use global network
information.

Recently, computational intelligence has been success-
fully employed in a variety of applications ranging from
robot control [6] [7] [8], routing protocol [9], data offload-
ing [10], smart vehicles [11] [12], habitat and environ-
mental monitoring [13][14], and medical diagnostics [15].
We propose a novel approach to DTN congestion control
which uses computational intelligence techniques in order
to automatically adapt to the dynamics of the underlying
network without the need for human intervention. This
is particularly important in remote and extreme environ-
ments. The proposed DTN congestion control framework,
called Smart-DTN-CC, autonomically adapts the conges-
tion control effort based on the dynamics- and operating
conditions of the target environment. Smart-DTN-CC is
based on reinforcement learning [16], a machine learning



technique which, given the current environment, takes
actions with the goal of maximizing a cumulative reward.
Reinforcement learning is based on the idea that if an
action is followed by a satisfactory state (e.g., performance
improvement), then the tendency to produce that action is
strengthened (reinforced). On the other hand, if the state
becomes unsatisfactory, then that particular action is pe-
nalized. Reinforcement learning is known to be well suited
to problems in which the environment plays a paramount
role but prior knowledge about it cannot be assumed
either because it is not available or it is prohibitively
expensive to collect. Therefore, the only (practical) way
to acquire information about the environment is to learn
by interacting with it “online”.

In Smart-DTN-CC, a DTN node cycles through the
following sequence of steps: (1) it gets input from the envi-
ronment (e.g., its buffer occupancy, set of neighbors, etc);
(2) uses that information as representative of the current
state of the environment and, based on that knowledge,
chooses an action to take from a set of possible actions; and
(3) measures the reward resulting from the action taken.
Smart-DTN-CC’s overall goal is to maximize the reward,
i.e., minimize node congestion. To our knowledge, Smart-
DTN-CC is the first DTN congestion control framework
that has the ability to automatically and continuously
adapt to the dynamics of the target environment. This
unique feature allows Smart-DTN-CC to deliver adequate
performance in a variety of DTN applications and sce-
narios. As demonstrated by our experimental evaluation,
Smart-DTN-CC is able to consistently outperform existing
DTN congestion control mechanisms under a wide range
of network conditions and characteristics.

The remainder of this paper is organized as follows.
Section II introduces Smart-DTN-CC. Section III de-
scribes the experimental methodology we used to evaluate
Smart-DTN-CC while Section IV presents our results. We
conclude the paper with directions for future work in
Section V.

II. Smart DTN Congestion Control

Computational intelligence techniques have been ap-
plied to a number of networking problems including
TCP throughput prediction [17], network intrusion detec-
tion [18], loss classification to improve TCP congestion
control in wireless networks [19], path quality predic-
tion [20], content delivery networks (CDNs) [21], mobility
prediction [22], round-trip time [23], and collision rate [24]
estimation.

Smart-DTN-CC employs Q-Learning [25], a variant of
reinforcement learning, in which the learning agent first
uses online learning to build a model of the system and
then utilizes this knowledge to find a satisfactory solution.
We should also point out that one of our main design
goals is to base congestion control decisions on local
knowledge, e.g., information about the node itself and its

neighbors. This is because in challenged network environ-
ments, obtaining global knowledge is either impractical or
prohibitively expensive. However, if global information is
available, Smart-DTN-CC can also use it as input.

A. Q-Learning

In Smart-DTN-CC, Q-learning builds a representation
of the node’s state in terms of Q-values and then uses
these values to make congestion control decisions. Each
node x in the network stores its own view of its state in
a Q-table. In each position Q(s, a) of its Q-table, where
s are all possible states and a are the actions that are
possible in each state, the node stores a Q-value. Q-values
are estimates of the effectiveness of a node’s different
control strategy alternatives which are represented by the
different actions nodes can take. The actions used in
Smart-DTN-CC perform proactive or reactive congestion
mitigation and are independent of the underlying routing
protocol. Examples of Smart-DTN-CC actions include in-
crease/decrease message generation rate, discard buffered
messages (e.g., based on their age), broadcast congestion
notification locally, and migrate messages to neighboring
nodes (see Table I for a list of the actions that have been
currently implemented).

Q-values are updated each time conditions (such as
buffer occupancy, drop ratio, local congestion) change. The
goal of the learning algorithm is to discover a policy that
maximizes cumulative reward based on past experiences
and interactions with the environment. Each node main-
tains a history represented by a sequence of state-action-
reward,

〈s0, a0, r1〉, 〈s1, a1, r2〉, . . . (1)

This means that the node was in state s0, took action
a0, which resulted in it receiving reward r1; the node
transitioned to state s1, took action a1, and received
reward r2, and so on. At every iteration of our Q-learning
algorithm, a node updates its Q-table based on its current
state s and the selected action using Equation 3.

At each new experience the node is able to maintain
an estimate of the Q∗ function and adjusting Q-values
based on actions taken and reward received. This is done
using Sutton’s prediction difference [26] which is the dif-
ference between the immediate reward received plus the
discounted value (γ) of the next state and the Q-values of
the current state-action pair (Equation 2).

r + γV ∗(s
′
)−Q∗(s, a) (2)

The reward function (see Section II-E) can produce dif-
ferent rewards each time the transition 〈s, a〉 is repeated.
Consequently, the Q-learning algorithm will repeatedly
alter the values of Q∗(s, a) when the node receives a reward
r. Where in each node’s experience a decaying weighted
average of the current Q∗ values and the revised estimate
are taken into account. Thus in Equation 3, Q∗n denotes
the estimate on the nth iteration of the algorithm.



Q∗
n(s, a) = (1− ηn)Q

∗
n−1(s, a) + ηn(r + γV ∗

n−1(s
′
)) (3)

where

ηn =
1

1 + visitsn(s, a)
(4)

and

V ∗
n−1(s

′
) = maxa′ [Q

∗
n−1(s

′
, a
′
)] (5)

Note that visitsn(s, a) is the total number of times the
state-action pair has been visited up to and including the
nth iteration. Furthermore, the value of ηn in Equation 4
decreases as n increases, so that updates become smaller as
training progresses. When reducing ηn during training, it
is possible to reach the correct convergence of Q∗ function.
The value of V ∗n−1(s

′
) represents the maximum reward

that is attainable in the state following the current one,
that is, it is an estimative of the optimal future value.

The standard Q-learning algorithm has several stages as
shown in Algorithm 1. One particular benefit of using the
Q-learning algorithm is that it does not require specific
domain knowledge of the problem it is attempting to
solve [27].

Algorithm 1 Q-learning algorithm

1: procedure Q-learning
2: For each s and a, initialize the table entry Q(s, a) to zero
3: top:
4: Observe the current state s
5: Select action a through an action selection method and execute it
6: Receive reward r
7: Observe the new state s

′
and update the table entry Q(s, a) using

values of r and Q(s
′
, a)

8: s← s
′

9: goto top.
10: end procedure

It is important to note that Q-learning does not specify
what actions the node should take at each state as it
updates its estimates. This means that Q-learning allows
arbitrary experimentation while preserving the current
best estimate. This is possible because Q-learning con-
structs a value function on the state-action, and since this
function is updated according to the ostensibly optimal
choice of action at the following state, it does not matter
what action is being followed at that state. Because of this,
the estimated returns in Q-learning are not contaminated
by experimental actions [28]. Therefore Q-learning is not
experimentation sensitive.

Q-learning allows nodes to use different action selection
strategies. There are two main techniques for selecting
action a from the possible actions in every state [29]:
(1) Exploration allows selection of an action different
from the one that is considered the current best and (2)
Exploitation selects action a that maximizes Q∗(s, a).

In the beginning of the learning process, action selection
typically favors exploration whereas exploitation is pre-
ferred towards the end of learning. Section II-B describes
two action selection strategies we implemented in Smart-
DTN-CC and show their performance in Section IV.

B. Action Selection Methods

Our current implementation of Smart-DTN-CC employs
two alternate action selection strategies which differ in
how they combine action exploration and exploitation.
Using the first action selection method we use, which
was originally proposed in [28] and [30], nodes try out
actions probabilistically based on their Q-values using
a Boltzmann probability distribution. More specifically,
given a state s, a node tries out action a with probability
given by Equation 6.

ρs(a) =
e
Q∗(s,a)

T∑
a′∈A e

Q∗(s,a′ )
T

(6)

Note that e
Q∗(s,a)

T > 0 whether Q-values are positive
or negative. The “temperature” T controls the amount
of exploration (the probability of executing actions other
than the one with the highest Q-values). If T is high and
Q-values are similar, an action will be chosen randomly.
If T is low and Q-values are different, the action with the
highest Q-values be selected.

The second action selection method, called WoLF for
“Win or Learn Fast”, was introduced in [31] and [32].
The basic idea is to use two learning rates “to maximize
the probability of choosing a profitable action and slowly
decrease the probability of an action that is less beneficial
to the agent”. The rationale behind the use of this strategy
is that when a node is congested and it selects actions
that return negative rewards, it must try to reduce the
congestion level and make a slow transition to a less
congested state. This means that the node should keep
a reasonable probability of choosing actions that have
proven to be profitable in the recent past. Hence, we want
the node to gradually reduce its congestion level such that
it keeps buffer utilization high.

WoLF defines two learning rates: γmin and γmax. They
are used when the node is decreasing and increasing
its rewards, respectively. Initially, because nodes are still
exploring the environment, every action a has the same
probability of being selected (Equation 7). Note that A
denotes the set of all available actions for the node at state
s.

∀i ∈ A : ρai =
1

|A|
(7)

Consequently, if the node took an action ai at time step
t − 1 that increases its reward when comparing to the
previous reward at time step t, at time t it updates the
probability of selecting ai in the future. The node performs
this step using Equation 8, where ρt−1ai + γmax < 1. In
Equation 9, the probability of choosing another action j
is randomly distributed [32].



ρtai = ρt−1ai + γmax (8)

ρtaj =
1− ρtai
|A− 1|

,∀j ∈ A, j 6= i (9)

On the other hand, if the node’s reward decreased, ρtai is
updated as shown in Equation 10, where ρt−1ai − γmin > 0.
In Equation 11, the probability of choosing another action
j is incremented at the same rate, with respect to its
previous probability.

ρtai = ρt−1ai − γmin (10)

ρtaj = ρt−1+aj

γmin

|A− 1|
(11)

In fact, when a node at state s applies an action a and
receives a higher reward, the probability of choosing the
action a in the future increases. However, the node still
keeps a small probability of choosing other actions, which
allows it to continuously explore the dynamic environment
preventing the node from getting stuck at local optima.
On the other hand, if after applying an action a the
node receives a smaller reward, the probability of selecting
action a in the future is reduced by γmin. Thus gradually
more weight is given to more beneficial actions.

C. Smart-DTN-CC State Machine

Our approach entails that a node makes congestion
control decisions based on its local information (that
sometimes includes neighbor information) - the input rate,
output rate and available buffer space at the node, which
along with their derivatives are used to predict the level
of congestion in a DTN. The possibility of congestion is
indicated by a congestion detection daemon where a node
can be in one of the states shown in Figure 1: Congested,
Prospective-congested (PCongested), Decrease-congested
(DCongested) and Non-congested (NCongested). Note
that each node is able to predict if its buffer occupancy rate
is increasing (EWMA-POSITIVE) or decreasing (EWMA-
NEGATIVE). It does this using Exponentially Weighted
Moving Average (EWMA) [33] as show in Equation 12,
where Zt is the buffer occupancy prediction at time t,
Bocp is the current buffer occupancy and Zt−1 is the buffer
occupancy at time t− 1.

Zt = αBocp + (1− α)Zt−1 (12)

In this context, the congestion level indicated by the
daemon will depend on the available buffer space. In par-
ticular the node can make transition as shown in Figure 1
and as described above. Note that in Figure 1, BUFFER
OCP is the current buffer occupancy rate and BUFFER
FREE is the percentage of available buffer space.

1) Congested: the node makes a transition to Congested
state if there is no available space on node’s buffer

Fig. 1: Smart-DTN-CC state machine

2) PCongested: If the node’s buffer occupancy rate is
growing (EWMA-POSITIVE ) it moves to PCon-
gested state. This state indicates how imminent the
threat of buffer exhaustion is.

3) DCongested: If the node’s buffer occupancy rate is
decreasing (EWMA-NEGATIVE ) it moves to DCon-
gested state. This state indicates that the node is
already available to receive messages. Our approach
uses this state to provide network utility.

4) NCongested: In this state the node is in a terminal
state (the goal was reached by the controller). Our
approach is conservative here in the sense that a
buffer occupancy threshold (Buffer Threshold) exists
that determines the transition for this state and at
the same time the node’s buffer occupancy rate must
have a tendency to decrease (EWMA-NEGATIVE ).
This indicates the least and most likely of impending
congestion the node is up to.

D. Actions

In this section, we present the actions that have been
currently implemented in Smart-DTN-CC. They are sum-
marized in Table I.

E. Reward Function

In reinforcement learning, the reward function maps
each perceived state (or state-action pair) to a single
number, the “reward”, indicating the intrinsic desirability
of that state. A reinforcement learning node’s objective is
to maximize the total reward it receives in the long run.
Q-learning’s reward function evaluates the results of an
action in a given state in order to reward“correct”behavior
by increasing the Q-value of good actions or by decreasing
the Q-value of bad actions. Typically, the reward function
is not defined in terms of the action taken but rather by the
resulting state. In other words, the reward r is a function
of the transition from s to s

′
. Additionally, rewards are

associated with states and nodes are not just rewarded for
arriving at a“good”state s but also continuously rewarded
for remaining in state s.



Actions States

Congested
Prospective-
Congested

Decrease-
Congested

Non-Congested

Increase message generation period × ×
Broadcast CN (Congestion Notification) × ×
Discard expired message × × × ×
Discard old message × × × ×
Discard random message × ×
Discard message that will expire before next con-
tact arises

× ×

Discard oldest messages until space available ×
Migrate messages ×
Broadcast DCN - Decrease Congestion Notification ×
Decrease message generation period ×
Receive messages × × ×
Forward messages × × × ×

×: the action can be taken when the node is in the state

TABLE I: State action space table.

The rules dictated by the reward function impose cer-
tain behavior on the node when congestion takes place.
Therefore, the function itself and its coefficients have to
be carefully chosen in order to produce adequate results.
As mentioned above, our approach associates the reward
with the states. Table II shows the reward values we
use for each state where reward values were chosen in
the −1 to 1 range. Where −1 indicates that the node
has made a transition to a bad state (Congested) and
1 indicates a transition to a good state (NCongested).
In order to improve and to keep network utility high we
associate a smaller positive reward to the transition to
DCongested state of 0.5 and a smaller negative reward
value to PCongested of −0.5.

III. Experimental Methodology

One of our main goals when evaluating Smart-DTN-CC
is to show that it is able to deliver adequate performance in
a wide range of DTN scenarios and conditions. To this end,
we use the Opportunistic Network Environment (ONE)
simulator [34], which is a simulation environment designed
specifically for DTNs.

Each simulation ran for twelve simulated hours unless
otherwise specified. Each data point is the average of
at least 5 runs, with 95% confidence intervals displayed.
Results when no congestion control is employed are used
as performance baseline.

We use the following performance metrics in our study:
(1) delivery ratio is the ratio between the number of
received messages at destination nodes to the number of
message originally transmitted by the source and (2) end-
to-end latency is the average time to deliver messages to
their destination. The parameters of the ONE simulator
and the values we use in our simulations are listed in
Table III. Simulation parameter values we used in our
experiments were based on experiments reported in the
DTN congestion control literature, in particular, in papers
presenting the congestion control mechanisms we studied.

The scenarios we simulate include 50 nodes that move
according to a pre-defined mobility regime. As they move,
nodes encounter one another “opportunistically.” During
these opportunistic contacts nodes are able to exchange

messages. Figure 2 shows the output of the ONE simu-
lator’s graphic interface illustrating a snapshot of a DTN
scenario. We assume that all nodes have the same trans-
mission range.

Fig. 2: DTN scenario.

Section IV-C presents results comparing the perfor-
mance of Smart-DTN-CC against a set of congestion
control mechanisms representative of the current DTN
congestion control state-of-the-art, namely: AFNER [35],
CCC [36], RRCC [37], and SR [38].

We evaluate Smart-DTN-CC when DTN nodes move
according to three mobility regimes, namely: Random
Walk (RW), Random Way Point (RWP), and Shortest
Path Map-Based Movement (SPMBM). In RW [39], a
node randomly chooses a destination within the simulation
area. It then moves from its current location to the new
one with speed uniformly distributed within the interval
given by the Group.speed parameter. When it arrives
at its destination, the node picks a new destination and
repeats the steps above. The RWP mobility model [39] is
a generalization of RW and works as follows: a mobile node
picks a random destination within the simulated area; it
then moves to that destination with constant speed chosen
as a uniformly distributed random number in the interval
Group.speed. When the node reaches its destination, it
pauses for some time. In our simulations, the pause time is



States s States s
′

Congested Non-Congested
Prospective-
Congested

Decrease-
Congested

Congested -1 1 - 0.5

Non-Congested -1 1 -0.5 -

Prospective-Congested -1 1 -0.5 0.5

Decrease-Congested -1 1 -0.5 0.5

- : the transition does not exist.

TABLE II: Reward function

Parameters

Name Description Value

Scenario.endTime simulation time 43200 seconds
btInterface.transmitSpeed bandwidth 2.5 Mbps
btInterface.transmitRange transmitting range 150 m
Group.router routing protocol [EpidemicRouter, ProphetRouter, SprayAndWaitRouter (10

msg copies)]
Group.movementModel mobility model [RandomWayPoint, RandomWalk, ShortestPathMapBased-

Movement]
Group.bufferSize node buffer size 4000 KB
Group.bufferThreshold percentage value that indicates if the node is Non-Congested [50, 60, 70, 80, 90]%
Group.alphaEWMA the weight assigned to the current observation at EWMA function [0.05, 0.20, 0.40, 0.60, 0.80]
Group.gammaGlearning the discounted estimated future value at Q-learning function [0.20, 0.40, 0.60, 0.80, 1.0]
Group.actionSelectionMethod action selection methods [boltzmann, wolf]
Group.gammaMin minimum learning rate for WOLF action selection method 0.1

Group.gammaMax maximum learning rate for WOLF action selection method 0.9 -ρt−1
ai

Group.msgTTL message time to live 30000 seconds
Group.nrofHosts number of nodes in network 50
Group.speed max and min speed that the nodes must move {0.5, 1.5}m/s
Movimentmodel.worldSize area where simulation takes place 1 kmx1 km (RandomWayPoint, RandomWalk) and 6 kmx6 km

(ShortestPathMapBasedMovement)
Events1.size message size {50, 100} KB
Events1.interval Creation interval in seconds, i.e. one new message every 1 to 100 seconds [1-100, 1-200, 1-300, 1-400, 1-500] seconds

TABLE III: Simulation parameters and their values

a uniformly distributed random number between {0, 120}
seconds. After that, the node picks another random desti-
nation and repeats the steps above. We note that we use
the RWP mobility regime since it has been commonly used
in the DTN literature, and specifically in the papers that
propose the DTN congestion control schemes we use in
our comparative performance evaluation of Smart-DTN-
CC. The SPMBM [40] model uses Dijkstra’s shortest path
algorithm to calculate the shortest path from the current
location to a randomly selected destination. Similarly to
RWP, when the node arrives at its destination, it also uses
a uniformly random pause time between {0, 120} seconds.

Nodes generate messages according to a uniformly dis-
tributed random value within the interval specified by the
Events1.interval parameter. We vary the message gen-
eration rate according to the Events1.interval intervals
listed in Table III.

IV. Results

A. Cumulative Reward

One way to study the performance of reinforcement
learning approaches is to evaluate the evolution of the
cumulative reward [41] [42] over time. Figure 3 shows
the average cumulative reward over all nodes for different
mobility models as a function of simulation time. For these
experiments, the values we use for the simulation param-
eters, which are shown in the caption of Figure 3, have
been commonly used in the literature when evaluating Q-
Learning approaches [41] [42].

In Smart-DTN-CC, the cumulative reward increases if
the node makes a transition to either the NonCongested
or DCongested states. Consequently, cumulative rewards

that increase over time indicate satisfactory performance
which is what we observe from Figure 3.

Fig. 3: Average cumulative reward as a function of the
simulation time (Simulation Time 120 h, Buffer Size
4000 kB, Buffer Threshold 60%, α EWMA 0.80, γ Q-
learning 0.2, Message Generation Period 300 s, Epidemic
Routing, Boltzmann Action Selection Method).

B. Buffer Threshold Evaluation

Controlling buffer occupancy at network nodes is critical
in any congestion control effort. As such, Smart-DTN-CC
uses the buffer occupancy threshold to determine a node’s
current congestion level and trigger the corresponding
state transition. The results presented in this section show
the performance of Smart-DTN-CC as a function of the
buffer threshold.



Figure 4 shows the average delivery ratio as a function
of the buffer threshold for different routing protocols.
These results were generated using RWP mobility because
it is the mobility regime commonly used in the DTN
congestion control literature. However, we observe similar
behavior when we use both RW and SPMBM mobility.
Our results show that the higher the buffer threshold,
the more conservative the congestion control effort. In
other words, as the buffer threshold increases, congestion
control becomes less proactive and more reactive. This
is consistent with what we observe from the graph in
Figure 4 which shows an slight increase in delivery ratio as
the buffer threshold increases up to a certain value, after
which the delivery ratio decreases slightly. This behavior
is observed for all routing mechanisms used.

Fig. 4: Average delivery ratio as a function of the buffer
threshold for different routing protocols (Simulation Time
12 h, Buffer Size 4000 kB, γmax = 0.9, γmin = 0.1, γ Q-
learning 0.2, α EWMA 0.80, Random Way Point Mobility
Model, Message Generation Period 300 s, WoLF Action
Selection Method).

C. Comparative Performance Study

We also perform a comparative performance study of
Smart-DTN-CC using as baseline a set of existing DTN
congestion control mechanisms, namely AFNER [35],
CCC [36], RRCC [37], and SR [38], which we implemented
in the ONE simulator.

Figure 5 shows the average delivery ratio as a function
of the message generation period. We observe that Smart-
DTN-CC’s average delivery ratio is consistently higher
than all the other DTN congestion control mechanisms.
We should also highlight that Smart-DTN-CC yields supe-
rior performance for both the Boltzmann and WoLF action
selection methods.

Figure 6 shows Smart-DTN-CC’s average delivery ratio
compared to the different DTN congestion control mech-
anisms for different routing protocols and under different
mobility models. Consistent with what was observed in
Figure 5, the results show that Smart-DTN-CC using

Fig. 5: Average delivery ratio as a function of message
generation period (Buffer Size 1000 kB, Epidemic Routing,
Random Way Point, Smart-DTN-CC (Buffer Threshold
60%, γmax = 0.9, γmin = 0.1, α EWMA 0.80, γ Q-learning
0.2)).

either WoLF or Boltzmann action selection methods out-
performs the others mechanisms. Note that the same
trend is observed for different routing protocols. This
result highlights the fact that Smart-DTN-CC’s behavior
is independent of the underlying routing scheme, whereas
some existing DTN congestion control mechanisms (e.g.,
AFNER and RRCC) were designed to operate over specific
routing protocols.

Figure 7 compares Smart-DTN-CC’s average latency
against the other DTN congestion control techniques un-
der different mobility models. These results show that
Smart-DTN-CC’s latencies are significantly lower that the
ones for all the other mechanisms under all the mobility
regimes and routing protocols studied. Smart-DTN-CC’s
superior performance in terms of latency can be attributed
to its hybrid approach to congestion control which com-
bines proactivity and reactivity.

V. Conclusion

This paper introduced a novel congestion control frame-
work for delay and disruption tolerant networks (DTNs)
based on reinforcement learning. The proposed framework,
named Smart-DTN-CC, adjusts its operation automat-
ically as a function of the dynamics of the underlying
network and requires no a-priori knowledge of the target
environment. To our knowledge, Smart-DTN-CC is the
first DTN congestion control framework that has the
ability to automatically and continuously adapt to the
dynamics of the target environment which allows Smart-
DTN-CC to deliver adequate performance in a variety
of DTN applications and scenarios. As demonstrated by
our experimental evaluation, Smart-DTN-CC is able to
consistently outperform existing DTN congestion control
mechanisms under a wide range of network conditions and
characteristics. As future work, we plan to test Smart-



(a) Random Walk

(b) Random Way Point

(c) Shortest Path Map Based Movement

Fig. 6: Average delivery ratio for different mobility models
and routing protocol (Buffer Size of 500 kB, Message
Generation Period of 300 s, Buffer Threshold for Smart-
DTN-CC of 60%).

DTN-CC on a real testbed and evaluate its performance.
In particular, we plan to use Smart-DTN-CC in deep space
communication applications. To this end, besides simula-
tions in interplanetary scenarios, we will also implement
and test Smart-DTN-CC on the ION platform [43].

(a) Random Walk

(b) Random Way Point

(c) Shortest Path Map Based Movement

Fig. 7: Average latency for different mobility models and
routing protocols (Buffer Size of 500 kB, Message Genera-
tion Period of 300 s, Buffer Threshold for Smart-DTN-CC
of 60%).
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